Search published articles


Showing 107 results for Ali

Amirreza Bali Chalandar, Amirreza Farnia, Hamidreza Najafi, Hamid Reza Jafarian,
Volume 22, Issue 1 (March 2025)
Abstract

This study investigates the microstructural evolution and variations in the mechanical properties of pre-cold worked Nimonic 80A superalloy, subjected to two levels of deformation (25% and 50%) and welded via Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques using ER309L filler wire. The objective is to evaluate the effect of the initial microstructure on the welding behavior of Nimonic 80A and compare the weldments produced using GTAW and PCGTAW. Microstructural characterization was conducted using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). XRD analysis demonstrated that the welding pulsed current mode, compared to the continuous current mode and at equal heat input, led to a refined microstructure, suggesting improved welded mechanical properties of the weld. It also showed a potential reduction in grain refinement with a higher level of cold work. Tensile testing demonstrated that fractures consistently occurred within the weld zone (WZ), with the PCGTAW sample achieving the highest tensile strength (766 MPa). Microhardness analysis indicated a notable reduction in hardness within the heat-affected zone (HAZ) and WZ, particularly in the 50% pre-cold worked sample. However, PCGTAW retained higher hardness due to its refined microstructure. The weld metal primarily consisted of an austenitic microstructure characterized by dendrites and interdendritic precipitates. Microstructural analysis revealed that welding induced significant changes in the weldment, with the PCGTAW sample exhibiting a more uniform microstructure and smoother transitions at the weld interface. Fractography confirmed ductile fracture in all specimens, with smoother and more uniformly distributed dimples in the PCGTAW sample. These findings highlight the advantages of pulsed current welding in optimizing the mechanical performance of Nimonic 80A welds and suggest its potential application in industries requiring superior weld quality.
Mohammad Derakhshani, Saeed Rastegari, Ali Ghaffarinejad,
Volume 22, Issue 1 (March 2025)
Abstract

In this research, the morphology of the Ni-W coating was modified by adding graphene oxide (GO) nanosheets in such a way that a foam-like structure with high porosity and holes in the form of intertwined tunnels was obtained. Different amounts of GO nanosheets were added to the plating bath and the resulting coating was examined. In order to estimate the electrochemically active surface area, the cyclic voltammetry (CV) test was used. Moreover, the linear polarization test (LSV) and chronoamperometry in 1 M NaOH were conducted to investigate the electrocatalytic activity for the hydrogen evolution reaction (HER). It was found that by adding 0.4 g/L GO to the electroplating bath, the electrocatalytic properties are doubled and the active surface of the electrode is significantly increased.
 
Divya Tripathy, Anita Kushwaha, Smrita Singh, Smriti Dwivedi, Anjali Gupta, Lalit Prasad, Ashutosh Chauhan,
Volume 22, Issue 2 (JUNE 2025)
Abstract

Organosilicon compounds represent a fascinating class of molecules with diverse structures, unique bonding characteristics, and wide-ranging applications across various fields. The structural diversity of organosilicon compounds arises from the versatility of silicon, which can form a variety of chemical bonds, including single, double, and triple bonds with carbon, as well as bonds with other heteroatoms such as oxygen, nitrogen, and sulfur. This diversity enables the synthesis of an extensive range of organosilicon molecules, including silanes, siloxanes, silanols, silazanes, and silsesquioxanes, among others. The unique properties of these compounds, such as thermal stability, chemical inertness, and flexibility, make them valuable building blocks for the design of advanced materials.Organosilicon compounds find applications in diverse fields, including materials science, pharmaceuticals, electronics, and agriculture. In materials science, they are used as coatings, adhesives, sealants, and modifiers to impart desirable properties such as water repellency, thermal resistance, and biocompatibility. In the pharmaceutical industry, organosilicon compounds serve as drug delivery agents, imaging agents, and synthetic intermediates due to their biocompatibility and tunable properties. In electronics, they are employed as dielectric materials, insulators, and encapsulants in semiconductor devices. Current review aims to unlock new opportunities for the development of innovative materials and technologies with enhanced performance and functionality.
 
Zainab Dhyaa Fawzy, Saja Ali Muhsin, Taha Hassan Abood,
Volume 22, Issue 2 (JUNE 2025)
Abstract

Ceramics in dentistry have been mainly recommended from a cosmetic perspective. Yet, the hardness behaviour may limit the application in many cases. Although amber glass is used for medications and chemicals, no studies focus on using amber glass for dental purposes as an additive material. This study aims to investigate the dark amber glass behaviour as a new additive material for dental ceramics. The amber glass powder was prepared using the ball mill technique. For the amber glass powder characterization, the SEM/EDX, particle size, DSC, Ion release, and XRD analysis were tested compared to VITA Lumex® AC ceramic. In addition, the Vickers hardness test was applied for ceramic and ceramic amber with an addition of 0.01g, 0.03g, and 0.05g amber glass powder following the DIN EN ISO 6872/ 2019. Statistically, the ANOVA (post hoc- Tukey) test was used for hardness testing analysis at a significant P-value of (P≤0.05). The results show that the amber glass behaviour and composition elements seem similar to VITA ceramics. The addition of amber glass powder to ceramic shows an increase in the HV hardness of specimens. Overall, it was concluded that the amber glass powder could be a promising material for ceramics to use as an additive powder.
Seyed Hossein Razavi, Amirhossein Riazi, Alireza Khavandi, Mostafa Amirjan, Mohsen Ostad Shabani, Hossein Davarzani, Yazdan Shajari,
Volume 22, Issue 2 (JUNE 2025)
Abstract

Additive manufacturing (AM) of metallic parts has gained significant attention in recent years due to its ability to produce components without traditional tooling such as molds, melting furnaces, or extensive raw material preparation. Its unique capability to fabricate complex geometries has revolutionized part design and enabled substantial weight reduction. This review first outlines the development trajectory of metal-based AM, with a particular focus on laser-based fusion methods, including Laser Powder Bed Fusion (LPBF) and Direct Laser Deposition (DLD). Understanding this evolution helps researchers identify both the capabilities and limitations of AM technologies, thereby enhancing their application in areas such as prototyping, mass production, and repair. Each metal possesses unique physical and chemical properties, which often make traditional manufacturing methods more challenging—especially for alloys with high strength, hardness, or temperature resistance. In this context, the review then focuses on nickel-based superalloys (NBSAs), which are widely used in high-temperature and high-stress environments but are particularly difficult to process using conventional techniques. Their application serves as a representative case study for evaluating the performance and feasibility of AM techniques for advanced materials. Furthermore, the future prospects of AM are discussed, including advancements in monitoring systems, integration of machine learning, and the development of AM-specific alloys. As a novel aspect, this work compares LPBF and DLD in terms of their advantages, limitations, and resulting material properties, along with a comparison to traditional manufacturing methods such as casting and wrought processing.
 
Ali Keramatian, Mohammad Hossein Enayati, Fatemehsadat Sayyedan, Sima Torkian,
Volume 22, Issue 2 (JUNE 2025)
Abstract

The aim of this study was to investigate the effect of current density on the microstructure of electrodeposited Ni–WC–TiC composite coatings on 304 stainless steel and compare the corrosion resistance of the coating and substrate in a 3.5 wt.% sodium chloride solution. A Watts nickel bath was employed under direct current (DC) conditions. Microstructure, elemental composition, and phase composition analyses were conducted using scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results revealed that the coating formed at a current density of 40 mA/cm² exhibited a denser microstructure with higher cohesion and uniformity compared to coatings produced at other current densities. The corrosion resistance of the coating and substrate was evaluated using Tafel and electrochemical impedance spectroscopy (EIS) analyses. The corrosion test results indicated that the substrate exhibited superior corrosion resistance compared to the coating. Based on the dynamic polarization test plots, the corrosion mechanism of the substrate is active-quasi passive, with a pseudo-passive layer forming on the sample which remains stable within the potential range of -0.17 to 0.17 V. Beyond this potential range, the sample becomes susceptible to pitting. In the coated sample, the corrosion behavior is similar to that of the substrate, with the exception that the pseudo-passive layer remains stable within a narrower potential range of -0.19 to 0.08 V.
Amin Rezaei Chekani, Malek Naderi, Reza Aliasgarian, Yousef Safaei-Naeini,
Volume 22, Issue 2 (JUNE 2025)
Abstract

This paper presents the novel fabrication method of a three-dimensional orthogonally woven (3DW) C/C-SiC-ZrB2 composite and the effects of ZrB2 and SiC particles on microstructure and the ablation behavior of the C/C–SiC–ZrB2 composite are studied. C/C–SiC–ZrB2 composite was prepared by isothermal-chemical vapor infiltration (I-CVI), slurry infiltration (SI), and liquid silicon infiltration (LSI) combined process. Pyrolytic carbon (PyC) was first infused into the 3DW preform by I-CVI at 1050°C using CH4 as a precursor in order to form a C/C preform with porous media. The next step was graphitization at 2400°C for 1hr. Then  ZrB2 was introduced into 3DW C/C preform with a void percentage of 48 by impregnating the mixture of ZrB2 and phenolic resin, followed by a pyrolysis step at 1050°C. A liquid Si alloy was infiltrated, at 1650 °C, into the 3DW C/C composites porous media containing the ZrB2 particles to form a SiC–ZrB2 matrix. An oxyacetylene torch flame was utilized to investigate The ablation behavior. ZrB2 particles, along with the SiC matrix situated between carbon fiber bundles, form a compact ZrO2-SiO2 layer. This layer acts as a barrier, restricting oxygen infiltration into the composite and reducing the erosion of carbon fibers. The findings were supported by FESEM imaging and further confirmed through x-ray diffraction and EDS analysis. The addition of ZrB2 to the C/C-SiC composite resulted in a lower mass and linear ablation rate; 2.20 mg/s and 1.4 µm/s respectively while those for C/C-SiC composite were 4.8 mg/s and 6.75 µm/s after ablation under an oxyacetylene flame (2500°C) for 120 s.
 

Page 6 from 6     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb